Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film anodes for Li-ion Batteries

Publication Type

Journal Article

Date Published

11/2007

Abstract

A novel synthesis method of thin-film composite Sn/C anodes for lithium batteries is reported. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one-step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 423 and 297 mAh g−1 at C/25 and 5C discharge rates, respectively. A long-term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

Journal

Journal of Power Sources

Volume

173

Year of Publication

2007
965

Issue

2

Pagination

965-971
Research Areas